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Stress ratio determinations from striated faults: a spherical plot for cases 
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Abstract--For stress regimes with one principal axis, z, vertical, the stress ratio is best represented by an angular 
function F '  = arctan[~/3(oz - (ox, + ox, + c%)/3)/(ox~ - ox_,)], or if the larger of the horizontal principal stresses 
(ox, and ax.,) is designated Oy, by F = arctan[~/3(oz - (ox + o;. + az)/3)/(o v - ox) ]. Traditional palaeostress 
regimes (normal, wrench, reverse) represent equal-angular sectors of F '  or F, and may be subdivided. On a 
spherical projection of F against 2y (where y is the bearing of maximum horizontal stress), the locus of all 
combinations of stress orientation and stress ratio capable of generating one datum (known slip direction on a 
known fault plane) is a great circle, since tanF = - cos(2y - (2s + b))/~3 cosb, where tanb = tanw/cosd, and s, d 
and a) are the fault strike, dip and striation pitch, respectively. Stereographic construction is simple using pencil 
and paper, and gives a visual appreciation of the definition of palaeostress states which could have generated the 
fault motions. It facilitates better than previous methods (1) the identification of radially symmetrical stress 
states; (2) recognition of suspect or incompatible data; and (3) delimiting the palaeostress state according to sense 
of shear, where this is known. Great circle and pole representations are suited to different purposes and data 
types, for which examples are given. 

INTRODUCTION 

SEVERAL authors have attempted to evaluate palaeo- 
stress regimes using populations of striated faults (e.g. 
Carey & Brunier 1974, Carey 1976, Armijo & Cisternas 
1978, Angelier & Manoussis 1980, Etchecopar et  al .  

1981, Armijo et  al.  1982, Angelier 1984, Carey- 
Gailhardis & Mercier 1987, Vergely et  al.  1987, C616rier 
1988, Will & Powell 1991). The two basic assumptions 
behind these methods are that striae on a fault record the 
direction of shear stress at the time of movement and 
that the stress regime is consistent (see Angelier 1989 
and Mercier & Carey-Gailhardis 1989 for an appreci- 
ation of the latter point). Discrepancies are variously 
ascribed to errors of measurement or to fluctuations 
from these assumptions. Such methods often indicate 
that one principal stress is approximately vertical. By 
incorporating the Andersonian assumption of a vertical 
principal stress (here c%), the determination can be 
greatly simplified. There then exist only three degrees of 
freedom amongst the stress tensor (fully specified absol- 
ute magnitudes), the orientation of a fault plane and the 
shear direction of that plane. Sim6n-G6mez (1986), 
following Bott (1959) and Jaeger (1969), derives for 
each known fault orientation and striation pitch (rake) a 
residual univariant relationship, that of a ratio R of 
differences in principal stresses as a function of the 
bearing y of the Cry axis (Oy > Ox). He then com- 
putes numerically the univariant (y, R) curve for each 
fault, converts each curve numerically to a new scale 
( R *  = n ( R / ( R  + 1))) and plots them together on a graph 

of R vs y (e.g. Fig. la). The point, or knot, of mutual 
intersections of any subset of the sampled faults specifies 
the y and R values of a mutually acceptable stress regime 
for that subset (Simdn-Gdmez 1986). Figure l(a) shows 
the computed and rescaled (y, R) curves using 

R = (or z - tTx)l(oy - Ox) = sin 2 2 - (tan0 sin22)/(2 cosq~) 

(Sim6n-G6mez 1986) for a hypothetical set of reverse 
faults (Table 1). 

This paper proposes a new method based on a 
spherical representation. This combines graphical 
representation of the univariant relationship between 
orientation and stress ratio, following Sim6n-G6mez 
(1986), with use of an angular stress ratio function 
(arctan[X/3(oz - (o x +% + oz)/3)/(Oy - Crx)]) following 
Armijo e t  al.  (1982). The practical simplicity of this 
method is illustrated in Fig. 1. Curves describing the 
relationship between stress ratio and orientation for 
each fault become great circles, as in Fig. 1 (b). It is only 
necessary to identify two points in order to specify and 
construct each curve. Furthermore, the same relation- 
ship may in this co-ordinate system be represented 
within one hemisphere by the poles to the circles of Fig. 
l(b), as in Fig. l(c). Each pole has the inclination c and 
azimuth (2s + b + 180 °) given in Table 1. Their common 
great circle has itself a pole at inclination = -60  °, 
2y = 140 °, the point of intersection of the great circles in 
Fig. l(b). The co-ordinates of this point represent the 
same mutually acceptable stress regime for the fault set 
as does the intersection at (070, -1 )  in the (y, R) 
diagram (Fig. la). Apart from calculating the values in 
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(a) 

R= I . . . .  
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Table 1, no computation is necessary for either version 
of the proposed spherical representation. In contrast to 
(y, R) diagrams, it is not necessary to compute curves 
numerically, nor to rescale them, nor to use computer 
graphics. 

THEORETICAL BASIS OF ANGULAR STRESS 
FUNCTIONS 

Angular representation of stress ratio 

2y=O 
2y 

~ 2 y = 1 4 0  

2y=O 
(c) L 

Fig. 1. (a) The  computed and rescaled (y, R) curves for the six 
hypothetical faults in Table 1. The point of their intersection at 
y = 070 °, R = - 1 indicates that they could all have been generated by 
a reverse plane stress state with min imum horizontal stress equal to the 
mean of the vertical and max imum horizontal stresses, with the latter 
principal stress along 070-250 °. (b) The same relationship as in (a) with 
each fault represented by a great circle on an (F, 2y) s tereogram, 
where inclination F represents stress ratio. Cont inuous  lines are upper  
hemisphere,  pecked lines lower hemisphere.  The point of intersection 
at inclination F = - 6 0  ° and azimuth 2y = 140 is the (F, 2y) represen- 
tation of the stress state described above. (c) The pole representation 
of the great circles in (b). Only the lower hemisphere  is used if all faults 

have a reverse dip-slip component .  

The function of stress ratios appropriate to a given 
study of stress, and the best means of its graphical 
representation, will depend upon the assumptions be- 
hind the method. In this paper, the only assumption is 
that one principal stress direction is vertical. The magni- 
tudes of the three principal stresses are of equivalent 
status, being equally unknown. The z principal stress is 
of unique status, because its direction is invariable, being 
defined as vertical; the other two directions of principal 
stresses are of equal status, being unrestricted within the 
horizontal plane. The a priori equivalence of the two 
horizontal principal stresses will be emphasized here by 
referring to them as ~rx, and ox~. An appropriate function 
of stress ratio will therefore be one which gives equival- 
ent treatment to the three magnitudes of principal 
stresses, but which specifies the manner in which the one 
of unique direction departs from the other two. 

Figure 2 shows the graphical representation of the 
relationship described above. Note that although the 
absolute magnitudes of stresses may be set by specifying 
a zero-stress base height and a scale, the relationship 
between angle of rotation and the ratios of stress differ- 
ences is unaffected. This accords with the requirements 
addressed in this paper; methods employing the geom- 
etry of striation directions on faults do not constrain 
absolute magnitudes of stresses, only their ratio of 
differences. To illustrate this point further: we may 
consider the hypothesis of a constant mean stress by 
rotating the triangle in Fig. 2 about its centre. Alterna- 
tively, if we wish to assume constant vertical stress, due 
to gravitational load, we may rotate about the z apex. 
Each of these choices (or any other) leaves completely 
unaffected the relationship between angle of rotation 
and the ratios of stress differences of which the angle is a 
function. 

Combined angular representation of stress ratio and 
orientation 

The symmetry of the above treatment of principal 
stresses is significant. 

(1) The three-fold rotational symmetry is the graphi- 
cal representation of the equivalence of the three princi- 
pal stresses in terms of magnitudes. Such symmetry and 
the equivalence it represents are not present in formu- 
lations such as (02 - cr3)/(oi - or3) (e.g. Angelier 1975, 



Spherical plot for stress determination from striated faults 

Table 1. Data for a hypothetical set of six reverse faults, used to illustrate the comparison of the 
method proposed here with that of Sim6n-G6mez (1986) (Fig. 1). Striation pitch, or rake, to, is 
measured clockwise from strike. The (y, R) curves in Fig. l(a) are computed from the parameters 

shown. For the proposed method, no further computation is necessary 

Data Method of Sim6n-Gdmez Method proposed 
Fault strike dip pitch ~ = d 0 = ]oJ] tan0 
No. s d ~o 2 cosq~ 2s b* 2s + b - c*  

1 030 42 +64 42 64 1.38 060 71 131 29.4 
2 086 56 -66  56 66 2.01 172 - 7 6  096 22.7 
3 124 60 - 6 0  60 60 1.73 248 - 7 4  174 25.5 
4 170 84 +50 84 50 5.70 340 85 065 08.6 
5 235 41 +73 41 73 2.17 110 77 187 21.3 
6 320 76 - 5 4  76 54 2.84 280 - 8 0  200 16.7 

*b = arctan (tan o/cos d); c = arctan (~/3 cos b). 
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1989) or (or z - o~)/(Oy - Ox) (e.g. Armijo & Cisternas 
1978, Sim6n-G6mez 1986). 

(2) Rotation by 180 ° about the stress magnitude axis 
(up the plane of the paper of Fig. 2) swaps the two 
horizontal principal stresses, corresponding to a rotation 
of 90 ° about the vertical in real space. 

(3) Action of a centre of symmetry reverses the sign of 
all stress differences. This represents changing the stress 
state to one which would precisely reverse striation 
directions on fault planes of all orientations. 

To retain these properties, shown above to be appro- 
priate to the assumptions behind the method, necessit- 
ates a three-dimensional graphical representation in 
which stress ratio is represented by an angle in the plane 
of Fig. 2 (analogous to latitude), and orientation of a 
horizontal reference direction of the stress tensor is 
represented by a double angle about the stress magni- 
tude axis of Fig. 2 (analogous to longitude). 

(3" 

xz 

Fig. 2. Points representing the principal stress axes (here z, x I and x 2 in 
clockwise order) are marked equally spaced about a wheel. The 
magnitudes of their compressive stresses (o) are on a vertical linear 
scale. Rotating the wheel provides an unbiased scan through all 
possible ratios of differences between a values. Designating the radius 
a s / t he  distance between apices is ~/3l. The case a z = ( %  + ax~ + az)/3 
is chosen arbitrarily as the reference state, giving the angle F '  as the 
unbiased measure of stress ratio throughout a complete rotation. With 
horizontal principal stresses ox and Cry (Cry > Ux) , the diagram splits into 
two sides. With z in the left half, y = x 1 and the modified angular 
function F = F ' .  With z in the right half, y = x 2 and F becomes 
(180 ° - F ' ) .  In both cases, Fincreases upwards on the diagram, with a 

range of - 9 0  ° to +90 ° . 

Choice  o f  co-ordinates  

The natural representations for such angular combi- 
nations described above is on the surface of a sphere. Its 
implementation requires a choice of spherical co- 
ordinates. The zero direction chosen here for the stress 
ratio function is the horizontal on Fig. 2, perpendicular 
to the stress magnitude axis. The angle labelled F '  in 
Fig. 2 thus becomes the stress ratio function. Following 
previous workers, the chosen reference direction in the 
stress tensor is the direction of the maximum horizontal 
stress. The zero direction in the proposed spherical co- 
ordinate system is maximum horizontal stress towards 
north. Thus, the angle representative of stress tensor 
orientation on the spherical plot is 2y, following the 
usage of y by Sim6n-G6mez (1986). 

To specify the quantitative relationship between angle 
F '  and the magnitudes of the principal stresses, we call 
the distance from the centre of the triangle to the z apex 
in Fig. 2 a length l. The distance separating apices 
representing crx, and ox2 is ~/3l. After rotating an angle 
F '  from the zero position: 

az - (ox, +0~2 + Oz)/3 = l sinF' 

a~, - a~. = X/3l cosF ' .  

Therefore  

tanF'  = X/3 (a~ - (o,, + a, .  + a~)/3) / (o,, - a~) ,  
(1) 

where -1 8 0  ° < F'(_+N360 °) < 180 ° and a~2 > Ox,. The 
choice of the maximum horizontal stress as the identified 
direction within the stress tensor introduces a distinction 
between the greater and lesser principal horizontal 
stresses and makes redundant angles of F '  greater in 
absolute magnitude than 90 °. This leads to a modified 
function F (Fig. 2), the same as 0 of Armijo et al. (1982), 
where 

tanF = X/3(Oz - (o~ + Oy + a~) /3) / (ay - a~); 

- 9 0  ° -< F(-+N360 °) -< 90 °. (2) 

This is related to the R of Sim6n-G6mez (1986) by: 
F = arctan[(2R - 1)/V'3]. 

Although readers may for practical purposes consider 
the angular function F to be merely a rescaling of their 
favourite stress ratio function, such as R of Sim6n- 
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G6mez  (1986), its practical convenience arises from its 
theoretical appropriateness to the assumptions behind 
the method.  It should be noted that the modification of 
F '  to F does not destroy the symmetrical equivalence of 
the two horizontal principal stresses in the proposed 
spherical representation,  merely of the co-ordinate 
frame imposed upon it. 

Named stress regimes in terms o f  F values 

Sim6n-G6mez (1986), following Bott  (1959), divides 
the range in stress difference ratio R into three stress 
regimes. Har land & Bayly (1958) introduced further 
named regimes for conditions approximating to the 
uniaxial stress states (in the broad sense of being radially 
symmetrical about a single identifiable principal axis), at 
R = - oo, R = 0, R = 1 and R = + oo, which bound Bott 's  
divisions. Armijo et al. (1982) point out that the angular 
function (F of this paper)  displays Bott 's  stress regimes 
as precise 60 ° sectors (Fig. 3a). These bisect neatly into 
30 ° subdivisions at plane stress states, providing the 13 
named tectonic regimes in Fig. 3(b). Because these 
regimes are characterized by a function of stress ratio 
which encapsulates all potential combinations of fault 
orientation and slip vectors, it retains the symmetry of 
the stress tensor about its principal planes. Thus, for 
example,  for every fault with sinistral motion there is a 
potential symmetrically identical fault of dextral 
motion. Therefore ,  the subdivision of the named 
regimes into 'sinistral' and 'dextral '  subregimes (Bott 
1959) on the basis of stress difference ratio is theoreti- 
cally unsound. However ,  that is not to deny the possi- 
bility that one may discern empirically, for any dataset,  
that only an asymmetrical portion of the range of orien- 
tations permit ted by stress ratios is actually represented.  

MATHEMATICS OF THE SPHERICAL 
CO-ORDINATE SYSTEM 

Symbols and conventions 

It has already been assumed above that compressional 
stresses are positive, that the oz principal stress is vertical 
and that Cry > o~. Values of angles are given in degrees 
where 360 ° is a complete rotation. The strike of a plane 
and the direction of the cry axis are given as positive 
clockwise bearings from north, denoted s and y, respect- 
ively. Readers  may use their own conventions both for 
their range and for which end of these axes to record; the 
two-fold symmetry of the stress tensor about the 
assumed vertical principal axis ensures that the choice 
will make no difference to the determined stress regime. 
Dip, denoted d, is restricted to the range 0-90 °. 

Past workers have used the symbol R for several 
different stress ratios; it will only appear  here in dis- 
cussions of cited literature. The symbol 'q~', commonly 
used for angle of friction, has also been used for dip of a 
fault plane (e.g. Sim6n-G6mez 1986) and for stress ratio 
(e.g. Angelier  1975). The symbol '0 '  has been used for 

(a) 
+90 

{ 

Gravity ~30 

/ WRENCH 

~ ench 

< ~e~e/ 
THRUST 

-90 

30 

<b> j 
y~.x 

F = +90 o'~ >>Cry>Or, 

Cry >O'z>>~x 

o ~'z= o-: + o', 
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~ > ~  

o"×=_O'y +o'z 
F = - 90  O'y >o'×~O'z 2 
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Fig. 3. (a) The named tectonic regimes of Bott (1959) (in capitals) and 
Harland & Bayly (1958), showing their relationship to the angular 
stress ratio function F. (b) Thirteen named tectonic regimes proposed 
here, with the broad three-fold division retained. BoWs term 'normal' 
is used, rather than 'gravity' of Harland & Bayly, for vertical compres- 
sion exceeding compression in the horizontal plane. Their agreed term 
'wrench' is retained for vertical compression within the range of that in 
the horizontal plane. 'Reverse' is introduced as being freer of un- 
warranted associations in its modern connotation than their term 
'thrust' for vertical compression less than the horizontal compressional 
range. Subdivision of these broad 60 ° sectors of F is by addition of 
preceding terms, which may be omitted in cases where only the broad 
categorisation is appropriate. All names used are adjectival (e.g. 
"extensional' rather than the noun form 'extension'), in recognition of 
the awkward fact that conditions of stress are here being distinguished 
on the basis of the deformation that they have the potential to induce. 
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striation pitch (Sim6n-Gdmez 1986) and the stress ratio 
function favoured here (Armijo et al. 1982). These 
symbols will not be used in this paper. 

Derivation of univariant equations in double angles 

The three orthogonal co-ordinate frames in real space 
used in this derivation are shown in Fig. 4. Co-ordinates 
in the fault frame, particular to each individual fault, are 
related to the assumed common stress frame by 

[x"]y,, = c ° s d  0 - s i n d  1 0  1 0 

z" sind 0 cosd 

CO S/!. s i n ~  O ]  r x  ] ( 3 )  

x -sin2 cos2 0 J l y J  
0 0 1 

The force on one side of a unit area of the fault plane is 
the vector sum of the components along the principal 
stress directions. Figure 5 illustrates the angular re- 
lationships between these directions and an element of 
the fault plane, which give the magnitudes of the com- 
ponents in the stress frame. Their vector sum can be 
represented by a line to the co-ordinate origin from a 
point having (x, y, z) co-ordinates (sind cos2 ox), 
(sind sin2 ay), (cosd oz). Substitution of these values in 
equation (3) gives the x" and y" components acting from 
down-dip and along strike, respectively. 

x" = sind cosd cos2,~ o" x + sind cosd sine). O'y 

-- sind cosd o~ 

y" = - sind sin2 cos2 ox + sind sin2 cos2 %. (4) 

The angle of pitch of the shear stress on the fault plane 
has a tangent equal to the ratio of these two components. 

Although the form of the above equations for shear 

i 
//Y" 

• //x ~ 

X 

Z=Z ' Vertical 
I~ z axis 

Z"nornlal ~ 
y,¢, 
strike 

~ cry .... 

X, × I 

X" down dip 

Fig. 4. The three sets of orthogonal co-ordinate axes used to obtain 
equation (3). Those denoted (x", 7", z") are different for each fault and 
must be related to the assumed common stress axes (x, y, z). The dip d 
is measured for each fault, but the horizontal angle 2 is the difference 
between the maximum horizontal stress direction (to be determined) 

and the measured strike of the individual fault. 

Fig. 5. Angles to principal stresses of an element of the fault plane 
having horizontal length l and thickness t. Its projected dimensions 
are: tsindlcos2 on plane X; tsindlsin2 on plane Y; tcosdlon  plane Z. 
The component of force acting on the element along each principal 
stress direction is the product of principal stress magnitude and 
projected area presented perpendicular to that axis. Dividing by tl 
gives the components per unit area of the plane as (sind cos2 a x) along 

x, (sind sin2 or) along y, and (cosd oz) along z. 

stress components in the fault frame is the same as that 
of Jaeger (1969) and Sim6n-G6mez (1986), the sign 
conventions, ranges or definitions of most angles are 
different. The horizontal angle 2 between fault and 
stress axes is defined here as ~, = y - s (Figs. 4 and 5). Its 
sign may be positive or negative, in agreement with 
Jaeger (1969), but contrary to the 2-positive convention 
of Sim6n-G6mez (1986). The ranges of y, s and 2 are 
immaterial because all bearings are permitted both posi- 
tive and negative values. The striation pitch on the fault 
plane will here be denoted ~o, defined as the angle 
(clockwise-positive from above) from the y" axis 
(strike). This is shown from positive-y" in Fig. 5, 
whereas Jaeger (1969) defines w clockwise-positive from 
the negative-y" axis; the difference is of no consequence 
because the same value of tan 09 results. Jaeger's symbol 
~o is chosen intentionally, to distinguish it from 0, which 
Sim6n-G6mez (1986) defines as positive in reverse faults 
and negative in normal faults. Both the sense of shear 
and the range of 0) are immaterial to the following 
derivation. 

Relating ~o to components of shear stress: 

tango 

x" 2x" sind 
y" 2y" sind 

x cosd- 2 ( -az  + cos22 ax + sin22 oy) 
2 sin2 cos2(Oy - ox) 

cosd 
2 sin). cos2 

I - ( 2 o z -  2 cos22 a x - 2  sin22 as)] 
x (O-y- ax) 

.~  14:10-9 
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Z 

I 2y=O 
l , '  Y 2 y = 2 s ÷ b - 9 0  ° 

2y=2s+b+180° 
1/,q~ COS b - -~ - . t  

( t / ----......~---~uh~/ i i 1 

Fig. 6. The locus of points (P) obeying the relationship of equation (5), 
lie on a tilted section of a vertical cylinder, where the value (2y) is 
represented as the angle of a unit radius from 2y = 0 in the horizontal 
plane and tan F is a linear vertical scale. The proportionality of 'local' X 
and Z co-ordinates of P is used in the text to demonstrate that the locus 
for equation (5) is contained in a plane of tilt arctan(l&/3 cosb) about a 

horizontal diameter at 2y = (2s + b) _+90 °. 

- c o s d  

sin22 

(3o= - Oz) - ([2 cos22 - 1]o x + Ox) 
+ ([1 - 2 sin22]oy - %)  

(oy  - o . )  

1] and [1 - 2 sin22] by cos22 Replac ing  [2 cos22 - 
gives 

- sin22 tanw 

cosd 

= [ cos22 ( o ~  - ~,)] 3oz - (ox + Oy + oz) + 

Using equa t ion  (2), this gives 

- sin22 t a n o  _ X/3 t a n F  + cos22. 
cosd 

Defining tanb = tamo/cosd  and rea r rang ing  gives 

- X / 3  t a n F  = cos22 + sin22 tanb 

= (cos22 cosb + sin22 sinb)/cosb 

= cos(22 - b)/cosb. 

Rear rang ing  with 22 replaced  by (2y - 2s) gives 

1 cos(2y - (2s + b)) (5) 
t a n F  = - X/3 cosb 

As s and b are known f rom m e a s u r e m e n t ,  this represents  
a cosine curve for  the univar iant  re la t ionship be tween  
tan F, specifying stress rat io and 2y, double  the bear ing 
of the grea te r  horizontal  principal  compress ion  (oy). 

Locus of  univariant equations in spherical representation 

In the th ree -d imens iona l  g e o m e t r y  in t roduced  
earl ier ,  any 2y is r ep resen ted  by a horizontal  line at angle 
2y f rom a 2y = 0 (i.e. c~y N-S)  re fe rence  direction.  If  a 
line of  unit length is used,  the locus of  all oy direct ions is 
a hor izontal  circle of  unit  radius (Fig. 6). For  each fault,  
there  is a horizontal  d i ame te r  at 2y = (2s + b) +_ 90 ° for  
which t a n F  = 0, and one pe rpend icu la r  at 2y = (2s + b);  

2y = (2s + b) + 180 ° for  which t a n F h a s  its m a x i m u m  and 
m i n i m u m  values,  respect ively  (equat ion  5). For  the 
r e m a i n d e r  of  this pa rag raph ,  these  hor izonta l  d iamete rs  
are t aken  as local (X,  Y, Z)  co-ord ina te  axes,  with 
posit ive X along 2y = (2s + b),  posi t ive Y along 2y = 
(2s + b) - 90 ° and posi t ive Z vertical ,  ' local '  in the sense 
of par t icular  to one r ep resen ted  fault. A n y  radius rep-  
resent ing a 2y value lies at angle 2y - (2s + b) f rom the 
local X axis, and its ex t remi ty  has local (X, Y) co- 
ord ina tes  of  (cos(2y - (2s + b)), - s i n ( 2 y  - (2s + b))) .  
We  can now represen t  the value of t a n F  by a vertical  
height (equat ion  5) of  

Z = t a n F  = ( - 1 / ( X / 3  cosb ) ) cos (2y  - (2s + b) ) .  

Note  first that  the local X and Z co-ordinates  are 
p ropor t iona l ,  such that  any point  (X, Y, Z)  represen t ing  
a fault  must  lie on a p lane  of tilt arc tan (1/(X/3 cosb))  
which contains the hor izontal  Y axis (Fig. 6), and sec- 
ondly that  the direct ion f rom the origin to each (X, Y, Z)  
point  can be specified relat ive to universal  co-ord ina tes  
by its incl ination F and az imuth  2y. Super impos ing  a 
sphere  of  unit radius,  the locus on the (F, 2y) sphere  
of  all possible  (F, 2y) values  for  one fault  da tum be- 
comes  the intersect ion of the sphere  with the p lane  of  
tilt arctan(1/(X/3 cosb) abou t  hor izonta l  d i ame te r  
2y = (2s + b) + 90 ° . Thus ,  each fault datum is rep- 
resented by a great circle. 

P R O P E R T I E S  O F  T H E  S P H E R I C A L  

R E P R E S E N T A T I O N  

The  spherical  r epresen ta t ion  descr ibed in this p a p e r  
has some  advan tages  in in te rpre ta t ion  over  the (y, R) 
curves of  S i m 6 n - G 6 m e z  (1986). These  most ly  relate  to 
three  par t icular  issues deal t  with separa te ly  below.  The  
first two issues concern  the appropr i a t eness  of  the spher-  
ical topology.  Cons ider  the th ree-d imens iona l  stress 
state.  As the values  of  the two hor izontal  principal  
stresses converge ,  m o r e  happens  than  simply Ox and ay 
becoming  the same  value.  The i r  identi t ies are defined by 
(~v > a~). Given  any interval  of  e r ror  in their  magni-  
tudes,  our  confidence in the correct  identification of c* x 
and oy decreases  as their  values converge .  F u r t h e r m o r e ,  
the identi ty of  these discrete principal  axes requires  
an iso t ropy  of stress in the horizontal  plane.  As o~ and o v 
converge  to a c o m m o n  value,  we progress ively  lose 
confidence in their  direct ions until, in the limit, ra ther  
than saying oy = o~, we should recognize that  all hori- 
zontal  direct ions are equal  in status. These  charac ter -  
istics of  the stress state are r ep resen ted  topological ly  on 
an (F, 2y) sphere .  As ~Tx and o,, converge  at F = +90  °, the 
represen ta t ion  at tains radial symmet ry  in the horizontal  
plane.  

Representation about horizontal isotropy 

The  advan tages  of  the spherical  plot  a round  oy = ox 
are listed here  and i l lustrated in Fig. 7. 
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(1) No numerical rescaling is needed to keep the plot 
in finite bounds as ox--* oy (i.e. F---, 90 ° whereas R ~ ~).  

(2) The indeterminacy of bearing y as o ,  ---, oy is an 
integral feature of the plot, not dependent on the par- 
ticular curves of faults sampled. 

(3) Knots around F = +90 ° are easily visible because 
distances between intersections have not suffered hori- 
zontal magnification. 

(4) Swapping of a~ and ~, is truthfully displayed as a 
gradational change in values. 

(5) Spurious intermediate stress orientations are 
avoided. 

Ghost knots 

The purpose of constructing the univariant curves for 
fault data is to find the co-ordinates of their 
intersect ion--the value of stress ratio and orientation 
capable of generating all the striated faults with curves 
contributing to that intersection. More typically, the 
intersection of the curves will not be exact; instead the 
curves will all pass close to a representative value of 
stress ratio and orientation, giving a cluster of mutual 
intersections ( 'knot ')  in its vicinity. Individual devi- 
ations from the representative value may arise from 
errors of measurement,  or from real variations in stress 
ratio and orientation. An advantage of graphical 
methods is that it is not necessary to make assumptions 
about deviations. Provided they are small, i.e. the knot 
is tight, the representative value is considered a suf- 
ficient approximation to the stress regime. However,  
there are three other circumstances which give rise to 
'knots' irrespective of stress regime. The spherical rep- 
resentation facilitates their identification and conse- 
quently the avoidance of erroneous interpretation. One 

Fig. 7. A comparison of the (y, R) and (F, 2y) representat ions of stress 
conditions approaching those of radial symmetry about the vertical 
stress axis. (a) Stereogram of (F, 2y) for two sets of values, each having 
a series of small stepwise changes in stress conditions. Set A is 
characterized by constant  orientation of all the stress axes, although 
the magnitudes of the horizontal principal stresses cross. The latter 
causes a switch between the designations as o:~ and o,. axes (e v > cry), 
accompanied by a jump in 2y from 090 ° to 270 °, but the constant axial 
bearings and the gradual nature of the changes arc faithfully rep- 
resented. Note the correctness of the indeterminacy of the value (2y) 
at F = 90 °, because the topology of the (F, 2y) sphere around this 
condition accords with that of the stress state. Set B has gradual change 
of both orientations and magnitudes.  (b) The upper (R > 0) half of the 
(y, R) diagram for the same sets as (a). Note how the two fractions of 
set A appear to be unrelated; such a representat ion invites the 
postulation of a (y, R) path, such as C, through intermediate y values 
between these fractions, whereas no real rotation of principal stresses 
has occurred. Note the stretching out of set B as it approaches infinite 
R. (c) The (F, 2y) s tcreogram (both hemispheres) ,  using great circle 
representation,  for faults 1-4 of Table 2. Their  'knot '  at conditions 
indicative of a 'radial'  stress regime with constant stress in the horizon- 
ta[ plane ('radial normal '  or "radial revcrsc')  is clearly identifiable. 
Such a knot at F ~ -+90 ° could either indicate a genuine palaeostress 
regime, as in Fig. 10, or alert us, as in this case, to data with d ~ 90°; 
~o * 0. Such data contradict the assumption of vertical principal stress. 
(d) The (y, R) diagram for the same faults to show how the inter- 
sections of the equivalent lines to those in (c) are spaced out horizon- 
tally, making the identification of knots near to R = _+ :~ dependent  on 
the user 's  appreciation of the distortion of the plot (whether or not 

such fault sets indicate a genuine palaeostress regime). 
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circumstance arises f rom errors;  the o ther  two are an 
integral feature of  any striation pitch me thod  which 
subsumes the magni tude  and sign of  shear  stress com- 
ponents  within their ratio,  as a means  of  handling the 
angle of  pitch of  the striations. A procedure  which 
eliminates these latter two types will be outl ined later. 

( l )  Knots at F = _+90 ° (R = + ~  on a (y, R) plot).  A 

remarkable  feature of  these methods  is their insensi- 
tivity to errors.  For  faults dipping <45  ° , up to 20 ° 
depar ture  f rom the assumed verticality of  one principal 
axis leads to < 10 ° error  in (F, 2y). A full t rea tment  of  
errors  is compl ica ted  and does little more  than justify a 
pragmat ic  approach  which may be summarized  as fol- 
lows. 

(i) For  a part icular  fault, errors of  measuremen t  of 
angles d and o) result in angular  errors  of  similar or  lower 
magni tude  ( x 2  or  less) in F a n d  2y, unless Icol < 30 ° and 
d > 80°; 

(ii) For  a set of  faults, any ou tcome  due to gross errors 
is likely to be failure to de termine  a knot  indicative of  
their c o m m o n  stress regime. 

The one impor tan t  except ion to these generalizations 
arises with data  which contradict  the symmet ry  assump- 
tions of  the method.  Because z is assumed vertical, all 
vertical faults (d ~ 90 °) should display a horizontal  
mirror  plane of  symmetry ;  only horizontal  striations 
(co ~ 0) are permit ted.  All obliquely striated vertical 
fault planes (d ~ 90°; ~0 ,t- 0) included in a data set will 
combine  in a knot  at F ~ + 90  °, as in Fig. 7(c). 

The  counterintui t ive effect of  the calculations with 
regard to vertical faults is wor thy  of  comment .  If  the data 
are not consistent  with the assumptions of  the me thod  in 
that co values are non-zero ,  a real value of  +90  ° is 
de te rmined  for b, hence also for F for all (2y) except at 
2y = (2s + b) +90  °, when F is indeterminate  and can 
take any value. This corresponds  graphically to stating 
that a vertical (F, 2y) great  circle can be drawn at 
2y = (2s + b) +90  °. On  the o ther  hand,  if the data  are 

consistent (co = 0), b and hence  F are indeterminate  for 
all (2y), and no circle can be drawn. In fact, any stress 
regime plott ing anywhere  on the sphere (apart  f rom a 
vanishingly small area along 2y -- 2s; 2y = 2s + 180 °) is 
capable of  genera t ing horizontal  shear stress on a verti- 
cal fault, and so none  can be favoured  and represented 
as a great  circle. 

In practice,  vertical faults should be considered im- 
por tan t ,  not  because they will help to constrain F or  2y, 
but because the closeness to horizontal  of  their striations 
indicates the accuracy of  the assumption that a principal 
stress axis was vertical. 

(2) Knots at F = _+30 ° (R = 0, R = 1 on a (y, R) plot).  
Every  great  circle of  

t anF  = ( - 1 / ( X / 3  cosb)) cos(2y - (2s + b)) 

passes th rough  F = - 3 0  ° for ov along strike (2y = 2s) 
and F = +30  ° for o X along strike (2y = 2 s + 1 8 0 ° ) .  
Therefore ,  if several faults share the same strike (includ- 
ing those of  opposed  dip) their (F, 2y) great  circles must  

2y=O 

/ / /  \, ', 

Fig. 8. The (F, 2y) stereogram (both hemispheres), using great circle 
representation, for faults 5-8 of Table 2. The circles 'knot' at 
(-30 °, 100 °) and (+30 °, 280°), indicative of mutually acceptable 'axial' 
stress regimes. Such knots at F = _+30 ° could either indicate a genuine 
palaeostress regime or, as in this case, alert us to a set of faults with 

common strike and different generating stress states. 

Table 2. Data for Figs. 7(c) & (d) and 8 to 
illustrate 'ghost knots' 

Fig. Fault strike dip pitch 
No. No. s d to 

7(c) & (d) 1 021 88 45 
2 053 90 45 
3 102 89 45 
4 136 89 45 

5 050 10 20 
6 050 10 70 
7 050 40 - 2 0  
8 050 58 - 6 6  

all pass through the same points at ( - 3 0  °, 2s) and 
( + 3 0  °, 2s + 180°). I f  these faults do belong to the same 
stress regime,  the circles should run together  right 
a round  the sphere and no part icular  concentra t ions  of  
intersections will be identifiable as indicating their gen- 
erating (F, 2y) value. If  their fault mot ions  are not 
consistent with a c o m m o n  generat ing stress regime,  they 
will spread out f rom clearly definable knots at _+30 ° , as in 
Fig, 8. Therefore ,  knots  at +30  °, at 2y = 2s cannot  be 
taken to indicate any value of  F; they indicate a c o m m o n  
strike direction and a lack o f  c o m m o n  stress regime. 
Faults sharing strike direction are c o m m o n  in crystalline 
basement  and its overlying cover in many  regions, so 
ghost  knots of  this type are likely to be encountered .  

(3) Complementary  knots at opposite points on the 
sphere. If  a group of  great  circles intersect at a knot  on a 
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sphere, they also intersect at the opposite point. (This is 
true whether the intersection is genuine, as Fig. lb, or 
not, as Figs. 7c and 8.) All the shear directions on all 
faults generated by one of the indicated stress regimes 
would be precisely reversed for the other. Therefore, we 
can only expect to constrain (F, 2y) (or its y, R equival- 
ent) to a complementary pair of possible values by the 
methods described up to this point in the paper. To 
identify which pair of points is appropriate, it is necess- 
ary to descriminate on the basis of recorded shear 
senses. For the example in Fig. 1, all faults had a reverse 
component, and it was therefore trivial to plot and 
determine the pole in the lower (horizontally contrac- 
tional) hemisphere, entirely without using the upper 
(horizontally extensional) hemisphere. For fault sets 
closer to a wrench regime, it is preferable to modify the 
method to take detailed account of shear senses, as 
described in the following section. 

INCORPORATING DISCRIMINATION OF SHEAR 
SENSE INTO THE METHOD 

2y=O 

Fig. 9. The procedure for plotting half great circles of the correct shear  
sense. The half great circle for fault 5 of Table 3 has already been drawn. 
That  for fault 6 of  Table 3 has the locations of ( - 3 0  °, 2s) and (+30 °, 2s + 
180 °) marked,  and is now aligned with a stereographic net, re ady to trace 
in its half great circle. This will be drawn ant ic lockwise  through (0, 2s + b 

- 90 °) because the horizontal component  of shear is sinistral.  

The choice between two complementary values of 
stress ratio requires knowledge and use of the sense of 
shear on the striated faults. Previous workers have 
suggested different approaches. 

Sim6n-G6mez (1986) makes use of procedures which 
are external to his (y, R) method to "delimit an interval 
in which the ay a x i s . . ,  is compatible with all fault 
movements". This may be appropriate with simple data- 
sets, because some of the methods available to test the 
validity of the assumption of a vertical principal stress 
provide the required information (e.g. Angelier & 
Mechler 1977, Lisle 1987, 1988). It may not be satisfac- 
tory if the data include faults produced in several differ- 
ent stress regimes. 

Maxwell (1990) describes each fault as 'sinistral', 
'dextral', 'normal' or 'reverse' and restricts each (y, R) 
curve to a sector compatible with this characterization. 

In this paper, it is suggested that the (F, 2y) great 
circle representing each fault should be restricted to 
that half which is consistent with the recorded shear 
sense for that particular fault, where the latter has 
been determined. This is most easily explained by 
considering the strike component of shear on a dip- 
ping fault plane. This will be dextral (positive y" in 
equation 4) for 0 ° < 2(_+N180 °) < 90 ° and sinistral 
for 90 ° < 2(+N180 °) < 180 ° . Shear stress passes 
through zero magnitude at 2 = N90 °, at which the 
stress state on the fault plane has bilateral symmetry 
about a vertical plane, thus ruling out non-zero shear 
stress (unless measured co = 90°). 

Translated to the (F, 2y) sphere, this means that each 
great circle is divided into a dextral half (2s < 2y < 2s + 
180°), and a sinistral half (2s + 180 ° < 2y < 2s + 360°), 
separated by zero shear stress points at ( -30  °, 2s) and 
(+30 °, 2s + 180°). Thus, it is easy to adopt a plotting 
procedure on a stereogram of both hemispheres which 
incorporatesshear sense for every fault. Thisistheadvised 

Table 3. Data  from near Zaragoza,  Spain, kindly supplied by R. J. 
Lisle, used for Figs. 9 and 10 to illustrate the discussion on the use of 
(F, 2y) plots. The shear  sense of every fault includes a normal  dip-slip 
component ;  hence positive ~o indicates a sinistral horizontal com- 

ponent  and negative eJ indicates a dextral component  

Fault No. s d ~o 2s b 2s + b 

1 119 88 90 238 90.0 328.0 
2 125 59 90 250 90.0 340.0 
3 151 65 +88 302 89.2 031.2 
4 135 50 90 270 90.0 360.0 
5 92 84 +70 184 87.8 271.8 
6 70 79 +67 140 85.4 225.4 
7 150 62 - 8 4  300 - 8 7 . 2  212.8 
8 136 80 +85 272 89.1 001.1 
9 59 66 +88 118 89.2 207.2 

10 292 87 - 8 4  224 -89 .7  134.3 
11 218 70 +82 076 87.3 163.3 

procedure for general use of  the (F, 2y) spherical plot and is 
as follows (illustrated by Fig. 9): 

(1) calculate 2s, b = arctan(tanco/cosd) and (2s + b), 
as in Table 3; 

(2) locate points ( -30  °, 2s) and (0, 2s + b + 90 °) and 
their opposites at (+30 °, 2s + 180 °) and (0, 2s + b - 90°); 

(3) draw half a great circle from ( -30  °, 2s) either 
clockwise if dextral or anticlockwise if sinistral, along the 
great circle which passes through (0, 2s + b +_ 90 °) as far 
as (+30 °, 2s + 180°). 

In interpreting the resulting stereogram, any semi- 
circle which ends within a knot should not be considered 
to contribute to it (see below). 

Using this procedure, semi-circles will only knot at the 
(F, 2y) regime of appropriate shear sense for every fault, 
thus avoiding the complementary 'ghost knots' pre- 
viously described. A semi-circle ending at a knot indi- 
cates that the stress regime of the knot would provide a 
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shear stress close to zero magnitude, not appropriate for 
the fault motion, with a principal stress axis lying very 
close to strike (2y = 2s). Thus, discounting the ends of 
the semi-circles will avoid the strike-parallel 'ghost 
knots' at F = +30 ° previously considered. 

A special procedure which may be adopted in the case 
that every fauh in the data set has the same sense of dip-slip 
component (either all normal or all reverse) is to calculate 
and plot the poles to the (F, 2y) great circles and then to 
choose a great circle to fit these plotted points, as in the 
example in Fig. l(c). For normal faults, only the upper 
hemisphere is needed, each pole having azimuth of 
(2s + b) and inclination c = arctan (X/3 cosb). For reverse 
faults, only the lower hemisphere is needed and the 
azimuth is (2s + b + 180°). The pole to the fitted great 
circle which lies in the plotted hemisphere has the (F, 2y) 
co-ordinates of the palaeostress regime suitable for 
generating all the faults which fit the circle. 

EXAMPLE AND DISCUSSION 

Table 3 is a subset of some fault data provided cour- 
tesy of R. J. Lisle which has been plotted using both half 
great circle and pole procedures (Fig. 10). The knot of 
Fig. 10(a) is clearly well defined and close to F = +90 °. 
The poles on Fig. 10(b) clearly lie so close to the 
horizontal (F = 0) plane that the pole to their great circle 
would correspond in position to the knot in Fig. 10(a), as 
it should. 

Each plotting procedure has some advantages as re- 
gards visual appreciation. The semi-circle diagram gets 
cluttered with lines with only a small number of faults 
(11 in Fig. 10a), making the pole diagram a more 
acceptable way to display such information. On the 
other hand, the exact spread of all possible intersections, 
and the drop off in intersection density away from the 
centre of the knot is only seen with the semi-circle 
diagram. The semi-circle diagram gives a better visual 
impression of the closeness of correspondence of nearly 
vertical (F, 2y) loci where these are of opposed tilt, such 
as faults 3 and 7 with their poles in NE and SW quad- 
rants, respectively, but only 2 ° difference in 2s. It also 
displays the limited range of overlap permitted for some 
pairs of loci, such as 7 and 9, which have close (F, 2y) 
poles (close (2s + b)), but almost perpendicular strikes, 
s. The conclusion to be drawn is that the semi-circle 
diagram is generally a better working tool than the pole 
diagram for any but the simplest data set, such as 
perhaps that used for Fig. 10. 

A couple of observations can be made about the 
interpretation of semi-circle (F, 2y) diagrams. These 
arise from the obvious point that however many inter- 
sections a semi-circle may have with others on the 
diagram, the fault it represents only had one generating 
palaeostress condition. 

(1) If the same bundle of curves makes a substantial 
contribution to more than one knot, all but one of the 
knots is probably incidental (as would appear to be the 
proper interpretation of figs. 2b and 5b of Simdn-Gdmez 

2y=O 

2y=O 

Fig. 10. (a) The (F, 2y) diagram for the data in Table 3, using the half 
great circle procedure. The labelled point A and the numbered faults 
are referred to in the text discussion. (b) The equivalent diagram using 
the pole procedure, as in Fig. l(c) except that it is the upper hemi- 
sphere which is represented for these faults which all have a normal 

dip-slip component. 

1986). We should be particularly wary of interpreting an 
evolution in palaeostress state in a direction along such a 
bundle from one knot to another. 

(2) The spread of intersections away from the centre 
of a knot does not in itself cast doubt on the existence or 
the precision of definition of the knot. Taking Fig. 10(a) 
as an example, two faults (7 and 9) have an intersection 
at point A, 40 ° from the knot's centre. Such deviations 
are inevitable from curves which lie at an angle of only a 
few degrees. For each of these faults, we can assume that 
its generating stress condition lay close to the much 
higher density of intersections where its curve traverses 
the knot. The intersection at A is of no consequence. 

From these observations, it should be clear that corre- 
lation of more than one knot with genuine stress con- 
ditions at different stages within the paleostress history 
requires extreme caution. Even if two genuine knots 
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exist, there may have been a spatial rather than a 
temporal separation of the two regimes. 
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